首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   109658篇
  免费   18257篇
  国内免费   14046篇
化学   78593篇
晶体学   1303篇
力学   6158篇
综合类   868篇
数学   13813篇
物理学   41226篇
  2024年   108篇
  2023年   2137篇
  2022年   2482篇
  2021年   3498篇
  2020年   4466篇
  2019年   4254篇
  2018年   3889篇
  2017年   3588篇
  2016年   5285篇
  2015年   5186篇
  2014年   6438篇
  2013年   8435篇
  2012年   10033篇
  2011年   10486篇
  2010年   7417篇
  2009年   7098篇
  2008年   7585篇
  2007年   6765篇
  2006年   6301篇
  2005年   5251篇
  2004年   4146篇
  2003年   3264篇
  2002年   2905篇
  2001年   2487篇
  2000年   2118篇
  1999年   2203篇
  1998年   1833篇
  1997年   1627篇
  1996年   1587篇
  1995年   1453篇
  1994年   1318篇
  1993年   1056篇
  1992年   943篇
  1991年   823篇
  1990年   700篇
  1989年   519篇
  1988年   408篇
  1987年   350篇
  1986年   351篇
  1985年   282篇
  1984年   200篇
  1983年   167篇
  1982年   130篇
  1981年   83篇
  1980年   64篇
  1979年   28篇
  1978年   23篇
  1976年   25篇
  1975年   24篇
  1957年   28篇
排序方式: 共有10000条查询结果,搜索用时 31 毫秒
991.
A few-layer fullerene network possesses several advantageous characteristics, including a large surface area, abundant active sites, high charge mobility, and an appropriate band gap and band edge for solar water splitting. Herein, we report for the first time that the few-layer fullerene network shows interesting photocatalytic performance in pure water splitting into H2 and H2O2 in the absence of any sacrificial reagents. Under optimal conditions, the H2 and H2O2 evolution rates can reach 91 and 116 μmol g−1 h−1, respectively, with good stability. This work demonstrates the novel application of the few-layer fullerene network in the field of energy conversion.  相似文献   
992.
Single-atom catalysts exhibit superior CO2-to-CO catalytic activity, but poor kinetics of proton-coupled electron transfer (PCET) steps still limit the overall performance toward the industrial scale. Here, we constructed a Fe−P atom paired catalyst onto nitrogen doped graphitic layer (Fe1/PNG) to accelerate PCET step. Fe1/PNG delivers an industrial CO current of 1 A with FECO over 90 % at 2.5 V in a membrane-electrode assembly, overperforming the CO current of Fe1/NG by more than 300 %. We also decrypted the synergistic effects of the P atom in the Fe−P atom pair using operando techniques and density functional theory, revealing that the P atom provides additional adsorption sites for accelerating water dissociation, boosting the hydrogenation of CO2, and enhancing the activity of CO2 reduction. This atom-pair catalytic strategy can modulate multiple reactants and intermediates to break through the inherent limitations of single-atom catalysts.  相似文献   
993.
The design of efficient heavy atom-free triplet photosensitizers (PSs) based on through bond charge transfer (TBCT) features is a formidable challenge due to the criteria of orthogonal donor-acceptor geometry. Herein, we propose using parallel (face-to-face) conformation carbazole-bodipy donor-acceptor dyads (BCZ-1 and BCZ-2) featuring through space intramolecular charge transfer (TSCT) process as efficient triplet PS. Efficient intersystem crossing (ΦΔ=61 %) and long-lived triplet excited state (τT=186 μs) were observed in the TSCT dyad BCZ-1 compared to BCZ-3 (ΦΔ=0.4 %), the dyad involving TBCT, demonstrating the superiority of the TSCT approach over conventional donor-acceptor system. Moreover, the transient absorption study revealed that TSCT dyads have a faster charge separation and slower intersystem crossing process induced by charge recombination compared to TBCT dyad. A long-lived charge-separated state (CSS) was observed in the BCZ-1 (τCSS=24 ns). For the first time, the TSCT dyad was explored for the triplet-triplet annihilation upconversion, and a high upconversion quantum yield of 11 % was observed. Our results demonstrate a new avenue for designing efficient PSs and open up exciting opportunities for future research in this field.  相似文献   
994.
The CRISPR/Cas system is one of the most powerful tools for gene editing. However, approaches for precise control of genome editing and regulatory events are still desirable. Here, we report the spatiotemporal and efficient control of CRISPR/Cas9- and Cas12a-mediated editing with conformationally restricted guide RNAs (gRNAs). This approach relied on only two or three pre-installed photo-labile substituents followed by an intramolecular cyclization, representing a robust synthetic method in comparison to the heavily modified linear gRNAs that often require extensive screening and time-consuming optimization. This tactic could direct the precise cleavage of the genes encoding green fluorescent protein (GFP) and the vascular endothelial growth factor A (VEGFA) protein within a predefined cutting region without notable editing leakage in live cells. We also achieved light-mediated myostatin (MSTN) gene editing in embryos, wherein a new bow-knot-type gRNA was constructed with excellent OFF/ON switch efficiency. Overall, our work provides a significant new strategy in CRISPR/Cas editing with modified circular gRNAs to precisely manipulate where and when genes are edited.  相似文献   
995.
Mimicking the structures and functions of cells to create artificial organelles has spurred the development of efficient strategies for production of hollow nanoreactors with biomimetic catalytic functions. However, such structure are challenging to fabricate and are thus rarely reported. We report the design of hollow nanoreactors with hollow multishelled structure (HoMS) and spatially loaded metal nanoparticles. Starting from a molecular-level design strategy, well-defined hollow multishelled structure phenolic resins (HoMS-PR) and carbon (HoMS-C) submicron particles were accurately constructed. HoMS-C serves as an excellent, versatile platform, owing to its tunable properties with tailored functional sites for achieving precise spatial location of metal nanoparticles, internally encapsulated (Pd@HoMS-C) or externally supported (Pd/HoMS-C). Impressively, the combination of the delicate nanoarchitecture and spatially loaded metal nanoparticles endow the pair of nanoreactors with size–shape-selective molecular recognition properties in catalytic semihydrogenation, including high activity and selectivity of Pd@HoMS-C for small aliphatic substrates and Pd/HoMS-C for large aromatic substrates. Theoretical calculations provide insight into the pair of nanoreactors with distinct behaviors due to the differences in energy barrier of substrate adsorption. This work provides guidance on the rational design and accurate construction of hollow nanoreactors with precisely located active sites and a finely modulated microenvironment by mimicking the functions of cells.  相似文献   
996.
Direct synthesis of gem-difluorinated carbocyclic molecules represents a longstanding challenge in organic chemistry. Herein, a Rh-catalyzed [3+2] cycloaddition reaction between readily available gem-difluorinated cyclopropanes (gem-DFCPs) and internal olefins has been developed, enabling the efficient synthesis of gem-difluorinated cyclopentanes with good functional group compatibility, excellent regioselectivity and good diastereoselectivity. The resulting gem-difluorinated products can undergo downstream transformations to access various mono-fluorinated cyclopentenes and cyclopentanes. This reaction demonstrates the use of gem-DFCPs as a type of “CF2” C3 synthon for cycloaddition under transition metal catalysis, which provides potential strategy for synthesizing other gem-difluorinated carbocyclic molecules.  相似文献   
997.
The unique intermolecular van der Waals force in emerging two-dimensional inorganic molecular crystals (2DIMCs) endows them with highly tunable structures and properties upon applying external stimuli. Using high pressure to modulate the intermolecular bonding, here we reveal the highly tunable charge transport behavior in 2DIMCs for the first time, from an insulator to a semiconductor. As pressure increases, 2D α-Sb2O3 molecular crystal undergoes three isostructural transitions, and the intermolecular bonding enhances gradually, which results in a considerably decreased band gap by 25 % and a greatly enhanced charge transport. Impressively, the in situ resistivity measurement of the α-Sb2O3 flake shows a sharp drop by 5 orders of magnitude in 0–3.2 GPa. This work sheds new light on the manipulation of charge transport in 2DIMCs and is of great significance for promoting the fundamental understanding and potential applications of 2DIMCs in advanced modern technologies.  相似文献   
998.
Constructing efficient artificial solid electrolyte interface (SEI) film is extremely vital for the practical application of lithium metal batteries. Herein, a dense artificial SEI film, in which lithiophilic Zn/LixZny are uniformly but nonconsecutively dispersed in the consecutive Li+-conductors of LixSiOy, Li2O and LiOH, is constructed via the in situ reaction of layered zinc silicate nanosheets and Li. The consecutive Li+-conductors can promote the desolvation process of solvated-Li+ and regulate the transfer of lithium ions. The nonconsecutive lithiophilic metals are polarized by the internal electric field to boost the transfer of lithium ions, and lower the nucleation barrier. Therefore, a low polarization of ≈50 mV for 750 h at 2.0 mA cm−2 in symmetric cells, and a high capacity retention of 99.2 % in full cells with a high lithium iron phosphate areal loading of ≈13 mg cm−2 are achieved. This work offers new sights to develop advanced alkali metal anodes for efficient energy storage.  相似文献   
999.
Non-metallic materials have emerged as a new family of active substrates for surface-enhanced Raman scattering (SERS), with unique advantages over their metal counterparts. However, owing to their inefficient interaction with the incident wavelength, the Raman enhancement achieved with non-metallic materials is considerably lower with respect to the metallic ones. Herein, we propose colourful semiconductor-based SERS substrates for the first time by utilizing a Fabry-Pérot cavity, which realize a large freedom in manipulating light. Owing to the delicate adjustment of the absorption in terms of both frequency and intensity, resonant absorption can be achieved with a variety of non-metal SERS substrates, with the sensitivity further enhanced by ≈100 times. As a typical example, by introducing a Fabry-Pérot-type substrate fabricated with SiO2/Si, a rather low detection limit of 10−16 M for the SARS-CoV-2S protein is achieved on SnS2. This study provides a realistic strategy for increasing SERS sensitivity when semiconductors are employed as SERS substrates.  相似文献   
1000.
Here, we for the first time introduce ethoxylation chemistry to develop a new octupolar cyano-vinylene-linked 2D polymer framework (Cyano-OCF-EO) capable of acting as efficient mixed electron/ion conductors and metal-free sulfur evolution catalysts for dual-promoted Li and S electrochemistry. Our strategy creates a unique interconnected network of strongly-coupled donor 3-(acceptor-core) octupoles in Cyano-OCF-EO, affording enhanced intramolecular charge transfer, substantial active sites and crowded open channels. This enables Cyano-OCF-EO as a new versatile separator modifier, which endows the modified separator with superior catalytic activity for sulfur conversion and rapid Li ion conduction with the high Li+ transference number up to 0.94. Thus, the incorporation of Cyano-OCF-EO can concurrently regulate sulfur redox reactions and Li-ion flux in Li−S cells, attaining boosted bidirectional redox kinetics, inhibited polysulfide shuttle and dendrite-free Li anodes. The Cyano-OCF-EO-involved Li−S cell is endowed with excellent overall electrochemical performance especially large areal capacity of 7.5 mAh cm−2 at high sulfur loading of 8.7 mg cm−2. Mechanistic studies unveil the dominant multi-promoting effect of the triethoxylation on electron and ion conduction, polysulfide adsorption and catalytic conversion as well as previously-unexplored −CN/C−O dual-site synergistic effect for enhanced polysulfide adsorption and reduced energy barrier toward Li2S conversion.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号